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Abstract

An opinion is sometimes heard that the Onsagerian description of heat and mass exchange is not compatible with the

commonly used engineering approach based on the hydrodynamic theory of boundary layer\ with transfer coe.cients

and driving forces[ However\ in this work we prove the compatibility of both descriptions for the same driving forces[

Applying a general approach based on the minimum of entropy production to a lumped relaxing system with sim!

ultaneous heat and mass transfer between two subsystems\ we _nd the canonical "Hamilton|s# structure of the non!

equilibrium dynamics\ and show a general self!consistent way of derivation of these dynamics[

The relaxation dynamics is derived from a {thermodynamic Lagrangian| Ls which uses two dissipation functions] a

rate dependent one F�^ and a state dependent one C[ Two possible variational approaches are compared] the _rst\

which uses dependent variables of state connected by constraints stemming from conservation laws "DVA#^ and the

second\ in which the constraints are eliminated in advance\ so that the model contains only independent variables "IVA#[

The _rst approach is novel\ the second is basically an integral version of Onsager|s approach in a two!phase context[

Both approaches are analyzed via methods of optimal control theory\ and make use of ideas based on the HamiltonÐ

JacobiÐBellman equation "HÐJÐB theory#[ It is shown that the DVA has a number of virtues with respect to the IVA]

it can deal with the non!truncated thermodynamic entropy and with absolute values of thermodynamic adjoints

"T−0\ T−0mi#\ and it gives a complementary relaxation picture for these adjoints\ as governed by the relaxation matrix

KT\ the transpose of the state relaxation matrix K[

Other new physical results elucidate a general optimal!control scheme to construct a non!equilibrium thermodynamic

entropy S as the principal function which satis_es an autonomous HÐJÐB equation and the related HamiltonÐJacobi

theory under the constraint of a vanishing thermodynamic Hamiltonian Hs � F−C\ necessary for S to be a state

function[ The properties of this entropy are herein analyzed\ and it is concluded that the proper non!equilibrium S is that

evaluated additively over the homogeneous subsystems[ This result\ along with the proven Lagrangian or Hamiltonian

dynamics of the heat and mass exchange\ enhances our con_dence to the Onsager|s theory[ Þ 0888 Elsevier Science

Ltd[ All rights reserved[

Nomenclature

A action\ area

DVA dependent variable approach

e internal energy in the thermodynamic relaxation

process
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E energy or energy!like function in terms of velocities

and state coordinates

H"x\ u\ m?\ p\ t# generalized Hamiltonian function

adjoining local constraints in a rate form

H"x\ u\ p\ t# Pontryagin|s Hamiltonian function of a

general continuous process

Hs � F−C dissipative Hamiltonian function of ther!

modynamic system

IVA independent variable approach

J performance criterion to be extremized

KN N!stage cost\ a measure of the total intensity of

entropy production in a discrete process



S[ Sieniutycz\ A[N[ Beris : Int[ J[ Heat Mass Transfer 31 "0888# 1584Ð16041585

K state relaxation matrix\ matrix of the products of the

transfer area A and transport coe.cients

L Lagrangian\ rate of entropy generation

Ls � F�¦C dissipative kinetic potential of a ther!

modynamic system

L\ Lg overall conductance matrix and partial con!

ductance matrix of the subsystem g\ respectively

Mi molar mass of i!th component

n vector of mole numbers in thermodynamic process

pg
i absolute transfer potentials\ derivatives of entropy

with respect to energy and mole numbers

pg vector of absolute transfer potentials in subsystem g\

with coordinates pg
i

p9 equilibrium vector of absolute transfer potentials\

with coordinates p9
i

p� interface vector of absolute transfer potentials\ with

coordinates p�i
Pn single!stage cost\ a measure of the local intensity of

entropy production in a discrete process

Ps power criterion in the entropy representation

R universal gas constant

R\ Rg overall resistance matrix and partial resistance

matrix of the subsystem g\ respectively

s speci_c entropy\ number of species in the mixture

ss state function describing minimal dissipated entropy

in the system

S\ S thermodynamic entropy and Onsager|s restricted

entropy\ respectively

S"x\ t# optimal entropy!like performance function in

terms of the current state and current time

t physical time\ time!like variable

T absolute temperature

u �"u\ m?# extended control vector including the Lag!

range multipliers of local constraints

U region of an admissible control

v9 entropy production rate in a general process\ rate of

cost production

v � x¾ rate vector of a general thermodynamic process

V volume of the physical system

W 0 GLG symmetric matrix of second dissipation func!

tion

x9 thermal coordinate "whose extremum is S#

x state vector of a general process with coordinates x9\

x and t

xi\ xf initial and _nal space!time vector of the general

process\ respectively

X � pg−pd interphase thermodynamic force as di}er!

ence of potentials p in both phases

X �"Xg\ Xd# thermodynamic forces as deviations of

transfer potentials from equilibrium[

Greek symbols

a vector of independent non!equilibrium variables in

standard Onsager|s theory

Gg thermostatic matrix of subsystem g based on nega!

tive entropy Hessian

G � Gg¦Gd overall thermostatic matrix of the system

d variational operator

zg
i \ z

d
i Planck potentials of ith component in subsystems

g and d\ respectively

Ls dissipative thermodynamic Lagrangian adjoining

the system constraints

mi molar chemical potential of ith species

m?a Lagrange multipliers of local constraints in the rate

form

ss entropy production

fa"x\ t# constraining function\ ath component of the

vector f

f?a"x\ t# time derivative of constraining function\ ath

component of the vector f?

F\ F� _rst dissipation function and its Legendre trans!

form\ respectively

C second dissipation function

9 nabla di}erential operator[

Subscripts

e energy

i ith component

s entropy\ entropy representation

s dissipative quantity

? derivative related quantity[

Superscripts

f _nal state

i initial state

T transpose matrix

g phase g\ gamma subsystem

d phase d\ delta subsystem

9 _nal state of equilibrium

� interface value\ Legendre transform

	 enlarged state[

0[ Introduction

In spite of many thermodynamic approaches applied

recently to chemical engineering problems\ the theory of

the coe.cients of heat and mass transfer and the ex!

change equations which contain them ð0\ 1Ł are most

frequently derived from hydrodynamics of real ~uids\ in

particular from the boundary layer theory[ By itself\ this

fact would be no disadvantage\ but opinions are some!

times expressed that the basic thermodynamic theory\

Onsager ð2Ł\ Keizer ð3Ł and Lavenda ð4Ł\ is not compatible

with the classical hydrodynamic outcome\ and\ conse!

quently a restrictiveness of thermodynamics of irre!

versible processes is suggested[ It is shown in this work\

however\ that this is actually not the case\ i[e[ not only

the two approaches\ hydrodynamic and thermodynamic\

are compatible\ but the thermodynamic approach can

contribute much to the recti_cation and extension of

classical results of the theory of heat and mass transfer[
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As these extensions can lead to non!linear generalizations

of the phenomenological equations\ the subject matter is

worth investigation[ Here we present the analysis of the

problem based on deterministic variational principles of

irreversible thermodynamics[

Consider a non!equilibrium system shown in Fig[ 0[ It

is a composition of two homogeneous subsystems g and d

separated by an interface with negligible thermodynamic

properties[ To present the basic concepts of this paper in

a transparent way\ we neglect surface phenomena by

treating the interface as just a mathematical surface\

possibly involving discontinuities of concentrations\

enthalpy etc[\ but not of the temperature and the chemical

potentials as the interface is still assumed to be non!

dissipative[ However\ a generalization including surface

e}ects and surface dissipation can still be worked out and

it will be the topic of a future work[ The subsystems are

not in thermodynamic equilibrium\ which means that

they di}er in the values of their intensive parameters\ the

temperature reciprocals and the Planck potentials[ In

principle\ we assume that both subsystems constitute an

isolated system\ yet a few remarks will be made through!

out the work about the non!adiabatic case[ Working

within the purely deterministic framework\ we revisit here

the classical problem of irreversible thermodynamics\

which is the relaxation of the overall lumped process to

equilibrium[

The di}erence in the subsystems intensive parameters

causes the simultaneous heat and mass transfer between

them[ We analyze the dynamics of energy and mole num!

bers during the subsystem|s relaxation to equilibrium\

with special attention paid to the particular process

description\ the one with dependent state coordinates

connected by the conservation laws\ f � 9[ Putting these

constraints into a standardized rate form "the form with

f? 0 df:dt � 9#\ we show the signi_cance of an approach

which adjoints the balance constraints to the total inten!

sity of dissipation through Lagrange multipliers in ther!

Fig[ 0[ A non!equilibrium system composed of the two phases g

and d with the physical properties di}ering in the values of

intensive thermodynamic parameters "transfer potentials#[

modynamic functionals[ The method resembles Liu|s

method of thermodynamic multipliers ð5Ł\ the basic

di}erence being\ however\ that our method works involv!

ing equality constraints\ not inequality as in Liu|s[ Thus\

we do not make predictions of inequalities implied by the

second law of thermodynamics\ but rather we derive the

kinetic equations of the process as thermodynamic equal!

ities[ They are associated with the minimum of dissipation

and hold for a de_nite model of dissipation contained in

the optimized dissipation functionals[

A basic approach to irreversible dynamics is applied

here using the integral criterion of minimum entropy

production and the corresponding local principles[ The

optimal control theory and variational calculus help

establish a general theoretical scheme governing the

phenomenological equations which are the dynamical

equations characterizing the behavior of a relaxation pro!

cess[ In fact\ our variational approach used not only

derives the standard dynamics of exchange processes ð0\

1Ł but also leads to the corresponding representation

of Onsagerian irreversible thermodynamics ð2\ 6Ł[ These

dynamics are shown to be Lagrangian or Hamiltonian[

They are governed by the thermodynamic entropy S as

the principal function of the variational problem\ satisfy!

ing the basic equation of HÐJÐB of the optimal control

and the related HamiltonÐJacobi equation[ The con!

ditions for the principal function S to represent the ther!

modynamic entropy are established as the additivity and

autonomicity of the dissipative Lagrangian Ls and van!

ishing of its Legendre transformation Hs "the dissipative

Hamiltonian#[ Once the two homogeneous subsystems "g

and d#\ which di}er with values of the transport potentials

"T−0\ T−0mi#\ are brought in contact at an initial time

ti\ an initial entropy of an isolated system Si is de_ned

additively over its subsystems "Si � Sig¦Sid#[ Knowledge

of Si at an initial time ti and state xi allows one to _nd

the _nal entropy Sf for a given _nal time tf " _nal state

xf# as the sum Si¦ss\ where ss is the minimal entropy

production[ The ss can be found by any optimization

method\ in particular by the dynamic programming "Sec!

tions 4 and 5 and Appendix#[ The system entropy S

remains additive for each future time instant

"S � Sg¦Sd# due to the additivity of the dissipation over

subsystems "Ls � Ld
s¦Lg

s#[ Each method "variational

calculus\ HÐJÐB equation or HamiltonÐJacobi theory#

lead to the same dynamics and the same governing

entropy[ These results show that the principles of irre!

versible heat and mass transfer are consistent with basic

laws of dynamics and optimal control\ thus enhancing

our con_dence to the Onsager|s theory[

Yet\ it should be stressed that the variational principles

considered here refer to the so!called _rst!order systems\

meaning that the e}ects of the kinetic energy are

neglected in them[ Taking these e}ects into account

would require us to use functionals with second!order

derivatives ð7Ð09Ł[ While the optimal control theory



S[ Sieniutycz\ A[N[ Beris : Int[ J[ Heat Mass Transfer 31 "0888# 1584Ð16041587

approach ð00\ 01Ł\ that we use here\ works with such

systems as well\ the structure of the mathematical prob!

lem and its analysis are complicated by the simultaneous

presence of reversible and dissipative terms\ as\ for exam!

ple\ encountered in equations of the Cattaneo type ð02Ł[

The related analysis would have been then more com!

plicated and would have obscured the main conceptual

line of this paper which is the presentation of the entropy

S as a potential generated along kinetic paths^ thus\ this

analysis is delegated to a future paper[ Equally omitted

is a generalization dealing with {real| thermodynamic sur!

faces as opposed to our {mathematical| interfaces[ More!

over\ we need to emphasize that in this work we do not

add any random components to the phenomenological

equations as it was done\ for example\ in the classical

work by Onsager and Machlup ð7Ł[ Despite working with

forward and backward algorithms of dynamic pro!

gramming as mathematical tools\ our dynamics are

restricted to relaxation processes only\ i[e[ we do not

consider dynamics of ~uctuations and e}ects of time

reversal[ Yet\ an evaluation can be made of the magnitude

and probability of statistical ~uctuations in the system

on the purely thermodynamic ground ð03Ł based on

evaluation of the di}erence between the non!equilibrium

entropy "as an additive quantity over homogeneous sub!

systems# and the limiting equilibrium entropy[

The state variables of the process are components of

the vector variable\ xg and xd\ which describe the {charges|

of energy and mass in the subsystems g and d]

xg �"ng
0−ng9

0 \ ng
1−ng9

1 \ ng
s−ng9

s \ eg−eg9# "0a#

xd �"nd
0−nd9

0 \ nd
1−nd9

1 \ nd
s−nd9

s \ ed−ed9#[ "0b#

The subscripts refer to the species and the energy as the

transferred entities[ The superscripts refer to two sub!

systems[ While x �"xg\ xd# are our basic variables\ we

shall also occasionally use the original state vector\

n½ �"n\ e#[ The superscript zero refers to the equilibrium

which is the thermodynamic equilibrium reached within

each of the two subsystems at in_nite time under global

"system!wise# adiabatic conditions[ Clearly\ the two sub!

systems can "but do not have to# represent the same

thermodynamic phase[ We will report the equation that

applies for the _rst subsystem g only\ if the equation

for the second subsystem can be trivially obtained by

exchanging g with d[

The balance constraints follow from the mass and

energy balances expressed in terms of the mole numbers

and energies of both subsystems]

f"xg\ xd# � xg¦xd � 9[ "1#

While this is an extremely simple structure\ and one of

the two vectors\ say xd\ could be immediately eliminated\

we shall not do this as we want to treat all state variables

on an equal footing[ Another argument against the state

variables elimination is that the simplicity of the con!

straint follows from the use of the conserved quantities

Fig[ 1[ Relaxation of original state variables in the considered

system[

"ng
i \ eg\ nd

i and ed# in a non!reacting system\ as the most

natural variables in thermodynamics[ Should one decide

to use arbitrary state variables the constraint equation

could be complex\ and\ in particular\ non!linear[ The

Lagrangian multiplier method\ which we use here\ is cap!

able of handling more complicated constraints as well[

Still we use here the above simple form of the constraint

for illustrative purposes[ Thus\ we will use and compare

two approaches to the same thermodynamic problem]

the dependent "or constrained# variable approach
"DVA#^ and the independent "or unconstrained# variable
approach "IVA#[

The rates of change of the coordinates xg and xd\
vg � dxg:dt and vd � dxd:dt\ may be regarded as the con!
trol variables for the optimal control problem in which
the total dissipation is minimized "Section 3#[ However\
within the framework of the variational calculus no ref!
erence to a control action needs to be made[ These two
viewpoints are compared throughout this work[ The rates
satisfy the balance constraint in the rate form

f?"x\ v# � vg¦vd � 9[ "2#

One can associate the above model with an exchange
process in an ideally mixed\ batch exchanger in which
two immiscible dispersed liquids or two di}erent phases
"e[g[ solid and gas# exchange energy and species between
themselves[ Another simple interpretation of this model
is the steady!state cocurrent ~ow of two adjacent streams
exchanging heat and matter through an interface[ Still
another example is the system of two interpenetrating
continua which di}er in their potentials "T−0\ T−0mi# at
the same point in space[

1[ Thermodynamic performance criteria for two

descriptions of exchange processes between

subsystems

Onsager ð2Ł has shown that the physical formulation of
the relaxation thermodynamics in terms of independent
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Fig[ 2[ Relaxation of Lagrange multipliers or thermodynamic

adjoints in the considered system[ Thermodynamic adjoints are

transport potentials for the energy and mass exchange[

variables\ a "a � xg � −xd in the above example#\

involves the minimization of the entropy production\ ss\

given\ by de_nition\ as the sum of two dissipation func!

tions\ F� and C[ The _rst dissipation function\ F�\

depends on the process rates da:dt and possibly on the

state a\ whereas the second dissipation function\ C "called

sometimes the generating function#\ depends only on the

state of the process which\ however\ may involve the

second derivatives of the state in those complex models

in which not only rates but also state accelerations play

a role[ These complex processes are called the second!

order processes\ and are not considered here[ This means

that we restrict ourselves to processes in which the second

dissipation function is a function of the state variables

only[

Dealing with a description of irreversible relaxation

processes in terms of a set of independent variables\ a\

Onsager ð2Ł proposed a restricted extremum principle in

which the phenomenological equations are obtained by

the variations of the rates in the expression which involves

the di}erence between the quadratic dissipation function

F�"da:dt# and the total derivative of entropy\

dS:dt �"1S:1a# da:dt\ under the assumption of the _xed

state vector\ a]

Ps 0
0

1
R] a¾a¾−

1S"a#

1a
= a¾[ "3#

Equation "3# is reminiscent of the structure which appears

in the dynamic programming method and the theory of

the HÐJÐB equation ð01Ł[ In thermodynamics\ equation

"3# represents what is sometimes called the {power

expression| ð4Ł[ Since this is obtained in the entropy rep!

resentation\ the subscript s is added to distinguish it from

similar expressions in the free energy representations\

where the related P has a dimension of the mechanical

power[ Use of the entropy representation is more suitable

for a description of non!isothermal relaxation processes\

which we want to study here[ In the original Onsager|s

treatment\ the positive de_nite matrix R\ which is called

the resistance matrix\ was assumed to be state inde!

pendent[ The nature of the restricted extremum of Ps with

respect to the rates a¾ at the _xed state a was recognized

to be minimum[ "This is\ of course\ easy to con_rm by

computing the matrix of the second derivatives of Ps

which is just R[# Thus\ it is the minimization of the power

expression "3# with respect to the rates v � a¾ which leads

to the relaxation dynamics

1P s

1a¾
� Ra¾−

1S"a#

1a
� 9[ "4#

In terms of the symmetric conductance matrix L � R−0

the above equation takes its popular form

da

dt
� L

1S"a#

1a
[ "5#

Clearly\ due to the requirement of the {frozen| a\ this

extremum principle is not a variational principle but a

local extremum condition[ One can\ therefore\ ask several

basic questions\ for example]

+ Is this local extremum condition related to any exact

variational principle<

+ If the answer is yes\ what role does equation "4# play

in a complete set of extremum conditions describing

irreversible motions to equilibrium\ and which are the

EulerÐLagrange equations of the variational problem<

+ What is the generalization of the underlying variational

principle to the case when the state variables are not

independent< This is the case in which there are physi!

cal constraints linking the coordinates of the state

vector\ such as the simple balance constraints "1# or

"2#[

+ What is the physical meaning of the non!equilibrium

entropy S< "the question which is still not answered

clearly enough despite the mathematical exactness of

Onsager|s theory#[

We shall show here that an exact variational principle

can indeed be associated with the local extremum prin!

ciple "4# for the non!equilibrium entropy S de_ned as the

sum of the entropies of equilibrium subsystems\

S � Sg¦Sd\ and that this variational principle expresses

the second law of thermodynamics for the whole system

in the form which uses a Lagrangian representation of

the total entropy production\ ss � sd
s¦sg

s [ The Lag!

rangian of the system is the sum of the two dissipation

functions\ Ls 0 F�¦C\ of which the _rst is rate "and

possibly state!#dependent and the second is only state!

dependent^ Ls contains contributions of all subsystems

to the total dissipation[ The subscript s in Ls stresses

the dissipative nature of this quantity[ The variational

principle shows that\ starting with any non!equilibrium

state\ an entropy coordinate of an isolated system grows

in time with such a rate so that to make its _nal value a
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minimum subject to the conservation constraints for any

process duration[ These constraints can be taken into

account before the variational procedure\ in which case

the dependent state variables are eliminated\ or they can

be treated explicitly within the variational procedure\ in

the rate form "2#[

In each approach "dependent or independent variables^

DVA or IVA#\ the restricted nature of the Onsager|s

extremum principle represents an analog of the HÐJÐ

B equation for the minimum of the generated entropy

functional[ For the Onsager|s unconstrained formulation

"with independent variables a^ IVA# the minimized func!

tional is]

J � g
t1

t0

Ls dt � g
t1

t0

ðF�"a\ a¾#¦C"a#Ł dt[ "6#

The asterisk superscript means that the _rst dissipation

function F� is regarded as the Legendre transform of an

original function F that appears in the Hamiltonian of

the problem[ The distinction between F� and F is im!

portant only in the case that the dissipation is non!quad!

ratic with respect to the rates a¾ � da:dt[

On the other hand\ for the case of dependent variables

"DVA#\ a minimum of the following function can be

considered]

J � g
t1

t0
Ls"x\ x¾ \ m?\ t# dt 0 g

t1

t0
ðF�"x\ x¾ #

¦C"x\ t#¦m? ="x¾ g¦x¾ d#Ł dt "7#

where x �"xg\ xd# and the dissipative Lagrangian Ls con!

tains the constraints adjoined via the vector of the Lag!

range multipliers\ m?[ The presence of time t in C means

that the above formulation admits the explicit presence

of time in Ls in the case of driven "non!isolated# systems[

Analytical forms of the dissipation functions may di}er

in either case "constrained and unconstrained#\ and the

state constraints cause some equations to be inter!

dependent[ In general\ the knowledge of both dissipation

functions is necessary[ While "as we shall see later# F and

C are numerically equal along extremals of an isolated

system\ taking Ls 0 ss as 1F or 1C in the integrand

expression would be erroneous\ since it is the analytical

form of the functional minimized which essentially in~u!

ences the result of extremization[

We shall compare the principal functions\ associated

dynamics\ dissipative Lagrangians and necessary

extremum conditions for the functionals "6# and "7# when

the same physical system is described in terms of either the

dependent or independent variables[ For isolated systems

the principal function obtained via minimization of a

pertinent quadratic Lagrangian is the change of the sys!

tem entropy between the initial and the _nal instant of

time[ The second!order approximation of the entropy

itself

S"x\ n9\ e9# � S9"ng9\ eg9\ nd9\ eg9#¦p9 ="xg¦xd#

−
0

1
Gg] xgxg−

0

1
Gd] xdxd "8#

is a suitable potential function for linear dynamics[ As it

contains the linear term\ the "{non!truncated|# entropy

of an initial state is assumed involving two systems at

equilibrium\ but not with respect to each other\ in terms

of that corresponding to the _nal common equilibrium

state and the deviations\ x[ When dealing with such non!

truncated S\ the optimal control approach shows the

important property of DVA] the Lagrange multipliers of

the rate constraints\ x¾ � v\ are the co!state variables in

the Gibbs equation\ the transfer potentials p[

2[ Thermodynamic driving forces and the entropy

production

The s¦0!dimensional vector p9 represents the common

value of the equilibrium transfer potentials in each sub!

system\ or the derivatives of the entropy around the equi!

librium

p9 0
1S g9"ng9\ eg9#

1"ng9\ eg9#
�

1Sd9"nd9\ ed9#

1"nd9\ ed9#

�"z9
0\ z

9
1\ [ [ [ \ z

9
s \ T

9−0

#[ "09#

The potentials are the Planck potentials "the ratios of

the chemical potentials and the temperature#\ and the

reciprocals of the temperature[ Of equilibrium\ the poten!

tials are di}erent for each subsystem[ In the interacting

phases\ the potentials are designated by zg
i and zd

i for the

Planck potentials and by T g−0

and Td−0

for the reciprocals

of the temperature[ For the subsystem g they satisfy\ by

de_nition\ the equations

pg 0
1S g"ng\ eg#

1"ng\ eg#
�"zg

0\ z
g
1\ [ [ [ \ z

g
s \ T

g−0

#[ "00#

An analogous equation holds for the subsystem d[ The

deviations of p from equilibrium values constitute the so!

called thermodynamic forces\ X �"Xg\ Xd#\ in the

approach using the dependent variables[ For the sub!

system g

Xg 0 pg−p9 �
1S g"ng\ eg#

1"ng\ eg#
−

1S g9"ng9\ eg9#

1"ng9\ eg9#

� "zg
0−z9

0\ z
g
1−z9

1\ [ [ [ \ z
g
s−z9

s \ T
g−0

−T9−0

# "01#

and analogous expressions are valid for Xd 0 pd−p9[

In the framework of the linear dynamical theory\ gov!

erned by the quadratic approximation of the entropy\

equation "8#\ the forces X �"Xg\ Xd# can be evaluated as

linear functions of the state variables x[ The force Xd

equals

Xg 0 pg−p9 �
11S g9"ng9\ eg9#

1"ng9\ eg9# 1"ng9\ eg9#
xg "02#
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and Xd 0 pd−p9\ the subsystem d\ satis_es the same de_!

nition[ Thus\ de_ning the constant matrices Gg and Gd as

the negative entropy Hessians at equilibrium

Gg 0 −
11S g9"ng9\ eg9#

1"ng9\ eg9# 1"ng9\ eg9#
^ "03#

Gd 0 −
11Sd9"nd9\ ed9#

1"nd9\ ed9# 1"nd9\ ed9#

one writes the thermodynamic forces in the simple forms

Xg 0 pg−p9 � −Ggxg^ Xd 0 pd−p9 � −Gdxd[ "04#

This leads to evaluation of the transfer potentials p as

functions of non!equilibrium state variables x in the

framework of the linear theory

pg 0
1S g"ng\ eg#

1"ng\ eg#
� p9−Ggxg^ "05#

pd 0
1Sd"nd\ ed#

1"nd\ ed#
� p9−Gdxd[

On the other hand\ the independent variable approach

uses the di}erences Xg−Xd which are equal to the di}er!

ences pg−pd of the transfer potentials "00# in both phases[

These should be contrasted with the single!phase devi!

ations of p described by Xg and Xd[

The second!order approximation of the ther!

modynamic entropy expressed by the dependent vari!

ables x\ equation "8#\ and the Onsagerian form of entropy

expressed by the independent variables a\ equation "13#

below\ can be compared[ Each entropy is based on the

equilibrium entropies of the "two# subsystems\

S � Sg¦Sd\ but\ as explained below\ involves di}erent

variables[ Also the entropy production appears in two

forms[

In the _rst case "DVA# all the "dependent# state vari!

ables are treated on an equal footing\ and then\ since the

parameters of the adiabatic equilibrium state are constant

and S is not explicitly dependent on time t\ we have]

dS

dt
�

1S

1t
¦

1S

1xg
= vg¦

1S

1xd
= vd

� pg"xg# = vg¦pd"xd# = vd[ "06#

This equation can also be written in the form

dS

dt
� zg

0

dng
0

dt
¦zg

1

dng
1

dt
= = =¦T g−0 deg

dt

¦zd
0

dnd
0

dt
¦zd

1

dnd
1

dt
= = =¦Td−0 ded

dt
"07#

which uses the original state variables n½ �"n\ e# rather

than their deviations\ x[

Accordingly\ for the linear dynamics\ associated with

the quadratic approximation of the entropy\ equation

"8#\ the rate of entropy production in terms of the depen!

dent variables x is

dS

dt
�"p9−Ggxg# = vg¦"p9−Gdxd# = vd[ "08#

Each of equations "06#Ð"08# will be applied in the HÐJÐ

B equation of the system with dependent state variables\

which will write down later[ The form explicit in x\ equa!

tion "08#\ uses the de_nition of the transfer potentials p\

equation "01#\ in terms of x\ in the framework of the

linear theory[

In the second case "IVA# the dependent state variables

are eliminated by using the constraining equations in

advance\ a procedure which leads to the use of inde!

pendent variables[ Then the rate of entropy production

exploits in advance the link between the state coordinates\

and consequently has the form

ss � pg = vg¦pd = vd �"pg−pd# = a¾

� "zg
0−zd

0#
dng

0

dt
¦"zg

1−zd
1#

dng
1

dt
= = =¦"T g−0

−Td−0

#
deg

dt

"19#

where a¾ 0 vg � −vd are the Onsagerian rates[ Of course\

the equation suggests that\ in order to satisfy the second

law of thermodynamics\ in a simplest case\ the ~uxes of

matter and energy to a de_nite phase should be pro!

portional to the di}erence between the instantaneous

value of the transport potential p in this phase and that

in the second phase[ However\ this need not apply when

there are discontinuities of the extensive variables

through the interface[ That di.culty is avoided in the

approach involving dependent variables[ This is an

important feature of DVA which shows its superiority

over the IVA[

Under the approximation of linear dynamics and a

quadratic entropy function\ the constraint!incorporating

entropy production\ equation "19#\ assumes the form

ss � pg = vg¦pd = vd

� "p9−Ggxg# = vg¦"p9−Gdxd# = vd

� −"Ggxg# = x¾ g−"Gdxd# = x¾ d � −""Ggxg#¦"Gdxg## = x¾ g

"10#

where the last equality uses the condition xg¦xd � 9 since

the x represents deviations[

In the formulae "19# and "10# we have taken the coor!

dinates of one subsystem\ xg\ as the set of the independent

variables\ and the state constraint along with its rate

representation have been used to pass to the entropy

production in terms of these independent variables[ Using

the traditional notation\ i[e[ making the identi_cation

a 0 xg\ one gets the entropy production in terms of the

Onsager|s independent variables a]

ss 0
dS
dt

� −a ="Gg¦Gd# = a¾ 0 −a = G = a¾ "11#

where by de_nition G � Gg¦Gd\ the positive matrix[ The

product −Ga equals the di}erence X � pg−pd between
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the potentials p in both phases which from equation "11#

can also be identi_ed as 1S:1a[ This di}erence is the

interphase driving force\ which is not the same as the

driving force Xg\ equation "04#[ Note that the IVA is

not capable of treating any surface discontinuities of

the extensive variables in multiphase systems\ and this is

where the superiority of DVA shows up[

Equation "11# describes the total time derivative of the

entropy function "entropy production# in which the state

constraint\ resulting from the conservation laws\ has been

incorporated a priori[ It is important that this equation

de_nes an entropy S which is a di}erent mathematical

function than S of equation "8#\ not only because it

contains the reduced set of non!equilibrium variables

"the independent coordinates a 0 xg#\ but also\ and more

importantly\ because it does not contain any linear terms

since such terms have been eliminated a priori\ through

the application of the conservation!law constraint[ The

quadratic approximation for such an entropy can be

obtained from equation "8# in which the state constraint

xg¦xd � 9 is applied\ thus yielding

S"a\ n9\ e9# � S"ng9\ eg9\ nd9\ eg9#−
0

1
G] aa "12#

where G 0 Gg¦Gd contains additive contributions of

each phase to the overall coe.cient[ This result shows

that the classical Onsagerian description may be regarded

as the particular case of a two!phase IVA when either of

two subsystems "of di}erent p# has identical properties\

in which case Gg � Gd and G � 1Gg[ Yet\ in the general

case\ the subsystem properties may be di}erent in either

IVA or DVA[ An analysis shows a greater lucidity of

DVA than IVA when physical interpretations of

coe.cients are essential[

In contrast to the above entropy function\ the genuine

entropy function in equation "8# does contain linear

terms[ Therefore\ while S"x# is the complete "non!trunc!

ated# entropy function of the non!equilibrium two!phase

system\ the Onsagerian entropy S"a# should be regarded

as the restricted entropy function or a pseudoentropy[

To point out the distinction between these functions we

use di}erent fonts\ "Times# S for the non!truncated ther!

modynamic entropy and "Geneva# S for the restricted

Onsagerian entropy[ The restricted entropy resembles the

well!known availability function divided by the "equi!

librium# temperature of environment\ except for one

di}erence[ Namely\ in the case of the traditional avail!

ability\ a de_nite medium is assumed present in an in_nite

amount as an environment\ hence the equilibrium tem!

perature is just the constant temperature of this environ!

ment[ However\ in the case considered\ both phases are

present in _nite amounts\ hence the equilibrium tem!

perature is that obtained when the internal "adiabatic#

equilibrium is reached between them[

The distinction between S"x# and S"a# cannot be

ignored\ as such ignorance can lead to essential errors[

While S"x# and S"a# coincide in the subspaces of vari!

ables satisfying the conservation constraints\ their partial

derivatives with respect to the state variables di}er sub!

stantially^ 1S:1x � p and 1S:1a � X � pg−pd[ Equation

"11# proves that the two!phase model considered is con!

sistent with the well!known classical expression for the

rate of the entropy production as the product of the

thermodynamic ~ows and forces

ss �
dS"a#

dt
� a¾ =

1S
1a

� a¾ = X[ "13#

From Onsager|s ð2Ł basic theory\ the evolution of the

variables ai in time\ governed by the linear dynamics

a¾ � −Ka\ is related to the gradient of S by the ~uxÐforce

relation

a¾ � L
1S
1a

� −R−0Ga "0−Ka# "14#

in which the conductance matrix L � KG−0 or its inverse\

the resistance matrix R � GK−0\ are symmetric matrices[

Through its relation to Hessians of the thermodynamic

entropy in each phase\ the static matrix G is also

symmetric[ However\ northing can be said about the sym!

metry properties of the relaxation matrix K[ Therefore\

physical theories are usually formulated in terms of the

matrices G and R\ or G and L\ in terms of which

K � R−0G � LG[

With the opportunity of mentioning the ~uxÐforce

relationship "14# as the main relationship describing the

dissipation dynamics considered here\ it is also important

to mention the fact that this relationship is completely

equivalent\ to the lowest order of approximation\ with

the dynamics described by the "more traditional to engin!

eering application# continuum unsteady di}usion equa!

tion[ Indeed\ if\ for simplicity\ we consider as our two

subsystems\ two in_nite layers of thickness Dl brought at

contact at time t � 9\ then it is straightforward to show

"i[e[\ using a piecewise parabolic approximation for the

spacial dependence of concentration# that if a represents

the average "in space# concentration di}erence before the

two sublayers\ i[e[\ a 0 c¹g−c¹d\ then it obeys to a lowest!

order approximation a dynamic equation exactly as the

provided by equation "14# with R−0G 0 D:2"Dx#1\ where

D is the "assumed constant# continuum di}usivity[ Thus\

the dynamic equations considered here are fully com!

patible with the traditional partial di}erential equations

describing dissipation through di}usion\ and the assump!

tion of constant material properties within each sub!

system is consistent with the spatial averages assuming a

continuum transport model[

With these adjustments\ we are now ready to compare

the two approaches to the non!equilibrium ther!

modynamics\ the DVA which treats all non!equilibrium

variables x on an equal footing\ associated with the use

of Lagrange multipliers\ and the "more traditional# IVA

which deals with the independent variables a[ This will

be done by using the framework of the optimal control
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theory as most basic and suitable[ As the DVA is a new

idea\ our analysis focuses mostly on the derivation of

DVA equations\ from which the IVA equations can be

found by elimination of properties of a de_nite phase "i[e[

applying the balance constraint#[

3[ Adjoining rate constraints and the optimal control

formulation

Note that in the optimal control formulation\ the con!

trol space of rates v �"vg\ vd# is introduced as independent

of the state space x �"xg\ xd#[ As the rates are dependent\

our approach adjoins the product of the Lagrange mul!

tiplier m? and the total derivative df:dt of the constraint\

equation "2#\ to the thermodynamic Lagrangian\ Ls\

which is the sum of two dissipation functions[ In the

theory\ the function Ls can thus be quite arbitrary\ yet in

our examples we assume that Ls has the quadratic form

with respect to rates

Ls"x\ v\ t# �
0

1
Rg"x#] vgvg¦

0

1
Rd"x#] vdvd¦C"xg\ xd\ t#

"15#

where x �"xg\ xd# and v �"vg\ vd# satisfy the simple di}er!

ential constraints

x¾ g � vg^ x¾ d � vd[ "16#

At this point it is unnecessary to make more speci_c

assumptions abut the second dissipation function C\

thus\ equation "15# admits an arbitrary general form of

C[

To treat the balance constraints\ the augmented Lag!

rangian is formed which adjoins the constraints in the

rate form "2# to the original Lagrangian\ Ls\ equation

"15#]

Ls"x\ v\ m?\ t# � Ls"x\ v\ t#¦m?"vg¦vd#

�
0

1
Rg"x#] vgvg¦

0

1
Rd"x#] vdvd

¦C"xg\ xd\ t#¦m?"vg¦vd#[ "17#

The sum Ls � F�¦C is sometimes called the dis!

sipative kinetic potential[ The global Lagrangian Ls\

which adjoins the constraints\ is the integrand of the

general dissipation integral\ equation "18# below\ which

has to be minimized subject to the di}erential constraints

"16#[ For arbitrary F� and C the functional "18# is merely

a mathematical construct\ without any physical relation

to the second law of thermodynamics[ However\ as long

as a certain stringent condition is ful_lled for F� and C\

which requires a time!independent C to be equal to F\

or the Legendre transform of F� ðsee equations "63#Ð"65#

belowŁ\ the functional "18# describes the second law in a

non!equilibrium system between the two time instants\ t0

and t1]

J � g
t1

t0
Ls"x\ v\ m?\ t# dt

0 g
t1

t0
ðF�"x\ v#¦C"x\ t#¦m? ="vg¦vd#Ł dt

� g
t1

t0 $
0

1
Rg"x#] vgvg¦

0

1
Rd"x#] vdvd¦C"xg\ xd\ t# "18#

¦m? ="vg¦vd#% dt[

This is the process performance index which should be

minimized subject to the rate!de_ning constraints\ equa!

tion "16#\ and for the arbitrary _xed duration tf−ti[ An

arbitrary initial time ti "e[g[\ ti � 9# can be assumed

admissible for an autonomous system[ The _rst line of

this equation describes a general structure proper for

the optimal control formulation\ whereas the second line

refers to the example with a quadratic dissipation func!

tion F�[ Clearly\ representations with rates as the deriva!

tives of state variables ðas in equation "7#Ł are forms

pertinent for direct use of the variational calculus ð04Ł

and the methods of classical mechanics ð05Ł[ On the other

hand\ the optimal control formulations\ in particular the

dynamic programming\ which we use here as a basis

for any representation of the problem "DVA or IVA#\

requires the minimization of J\ equation "18#\ subject to

the simple equations of state "16#[

As opposed to the traditional methods\ quoted above\

a most popular version of the dynamic programming\

the so!called backward algorithm ð06Ð10Ł\ generates a

minimum value of the functional J "or a minimum of a

_nal entropy coordinate^ Section 4# as a function of initial

states and initial times\ for an arbitrary but _xed _nal

state and _nal time

ss"x
gi\ xdi\ ti# 0 min J �min g

tf

ti
Ls dt[ "29#

A dual of the same problem\ the so!called forward al!

gorithm\ for the same quantity ss 0min J\ generates ss as

a function of _nal states and _nal times " for an arbitrary

but _xed initial state and initial time#\ and this refers to

a maximum of an initial entropy coordinate\ Section 4[

We stress that both backward and forward algorithms

deal here with the same physical process of relaxation

understood as the {forward!in!time| approach of the sys!

tem to the equilibrium\ and they have nothing in common

with the time!inverted dynamics which should be attri!

buted to the ~uctuations around the equilibrium[ Once

the initial and _nal states and the initial "non!equi!

librium# entropy of the system are assumed at a _xed

initial time instant ti\ the minimization principle described

by equation "29# leads to the _nal non!equilibrium

entropy Sf � Si¦ss at the _xed _nal time instant tf[ Yet\

due to a possible dependence of J on the process duration\
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the extremal function ss need not always be an increment

of the thermodynamic entropy\ which has to be a time!

independent state function[ In general\ the integration of

equation "29# along extremal paths generates ss as the

increment of the entropy function or its time!dependent

generalization[ The former is obtained for the quadratic

and time!independent dissipation functions F� and C\

and for C being the Legendre transformation of F�

expressed in terms of the state x[ These conditions assure

vanishing of the {thermodynamic Hamiltonian| F−C
and the time!independent ss and S[

The time dependent generalizations of entropy and

other thermodynamic potentials are not merely theor!

etical constructs[ Indeed it was recently shown ð11Ł that

such generalized quantities play the role of governing

criteria in open thermodynamic networks\ especially

those with time!dependent external sources[ However\ we

will not discuss here details of this issue[

4[ A generalized control scheme and the HÐJÐB

approach

Taking x �"x9\ x\ t#\ where x �"xg\ xd#\ as the enlarged

state vector\ and the derivatives dxk:dt\ as the controls

vk\ one can regard the thermodynamic entropy or its

generalization\ S\ as the minimum of a new "zeroth#

coordinate x9 in a general optimal control model applied

to our thermodynamic problem[ The variable x9 satis_es

dx9:ds � Ls"x\ v#\ where s is the independent variable of

a general description[ Depending on the model s may be

the time t\ a length parameter l\ or even a monotonic

variable of state xj[ Whenever s � t\ the unconstrained

part of the Lagrangian\ Ls"x\ v#\ equals the sum of two

dissipation functions F�¦C\ in other cases

Ls �"F�¦C# dt:ds[ Usually we will take s � t\ yet it is

useful to develop a general scheme\ for arbitrary s[ We

will write the generic di}erential constraints in the form

dx:dt � v\ meaning dxg:dt � vg and dxd:dt � vd\ where

v �"vg\ vd#\ are the process rates[

In this formalism\ a problem of the minimum entropy

coordinate x9 at the instant s � sf can be written as

x9"s
f# � minimum\ subject to the di}erential constraint

dx9:ds � Ls"x\ v# and all remaining constraints\

dx:dt � v and vg¦vd � 9[ Of course\ the minimum of

x9"s
f# is the value of the "generalized# entropy Sf at the

_nal instant\ sf[ In all optimal control formulations\ it is

natural that the rates v and Ls are regarded as functions

of the state x and certain controls\ u\ i[e[\ that one deals

with functions Ls"x\ u# and v"x\ u#[ Also the dimen!

sionality of the control vector u can be di}erent than that

of the state vector x in the optimal control formulations[

Yet\ for most common descriptions of relaxation "as ours

and Onsagerian#\ the control type variables are identical

with the process rates\ i[e[ u � v[ This means that the

dimensionalities of the original state vector x and that of

the control vector v are the same[ It will be occasionally

useful to apply the generalized scheme and draw con!

clusions in the framework of this generalization[ Thus\ in

the case of arbitrary controls u\ those should appear in

dynamics of the form dx:dt � v"x\ u#\ and the balance

constraints will have the form vg"x\ u#¦vd"x\ u# � 9[

However\ there may also be some extra inequality con!

straints on the path\ caused by a {con_gurational

obstacle|\ say O"x# ¾ 9^ then the original function

Ls"x\ u# must be modi_ed by also taking these constraints

into account[ Here we will assume that such inequality

constraints are not present\ nonetheless an augmented

Lagrangian Ls"x\ u# is still needed because of the con!

straint vg"x\ u#¦vd"x\ u# � 9[

The constrained path problem can be formulated

mathematically as follows[ Consider a control system of

the n¦1 state equations

dxb

ds
� vb"x\ u# b � 9\ 0\ [ [ [ \ n\ n¦0 "20#

where x �"x9\ x\ t#[ The index range\ n � s¦0\ comprises

all s components and the energy[ Equation "20# is the

enlarged system for an original set of equations

dxi

ds
� vi"x\ t\ u#^

dt

ds
� vn¦0"x\ t\ u# i � 0\ [ [ [ \ n "21#

in which xn¦0 � t[ The entropy S is the extremum of the

extra "zero!th# coordinate of the enlarged state vector\ x[

As the model does not contain explicitly the independent

variable\ s\ this is a parameter\ and there is no need to

introduce it as an "n¦1#!th coordinate[ "The quantity s

could only play a role in descriptions with explicit {aging|

or {activation| in which case a formal rate expression\

dxn¦1:ds � vn¦1"x\ t\ s# � 0\ should be included[# In

agreement with all the above\ the constrained entropy

variable\ x9\ satis_es the equation

dx9

ds
� Ls"x\ u#¦m? = f?"u# 0 Ls"x\ u\ m?# 0 v9"x\ u#

"22#

with the rate type constraining function f? 0 df:ds[ The

associated Lagrangian multipliers are m?[ The control sys!

tem "20# includes the original vector "x\ t# into the

enlarged state vector\ x �"x9\ x\ t#\ and the Lagrange

multipliers of the local constraints into the enlarged con!

trol vector u �"u\ m?#[ When t is explicitly present in v\

the system is non!autonomous " frequently it is {driven|

in this case#\ else\ there exists an energy!like constant "in

fact the Hamiltonian\ Hs# associated with the invariance

of the "transition related# entropy production functional

J with respect to the translation of time[ The Ls part in

equation "22# refers to the locally!unconstrained Lag!

rangian[ Because of the form f? � 9\ the constraint!

related part of the expression in equation "22# "i[e[ the m?

term# does always vanish[
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The extremum value of the entropy variable x9 equals

S\ and its optimal change is ss\ the minimal {entropy

production|[ In the constrained case\ the minimal entropy

change ss"x9\ x0# � min Jð�min"xf
9−xi

9#Ł should be

understood as a transition index associated with the aug!

mented Lagrangian Ls"x\ u# rather than with the original

Lagrangian Ls"x\ u#[ This also applies\ for example\ to

the situation when a {thermal ray| slides over a {con!

_gurational obstacle| in the state space[ In this case\ the

optimal trajectories "rays# may be composed of parts

located within the ath constraint boundary "Oa ³ 9\

m?a � 9# or on the boundary "Oa � 9\ m?a − 9#[ The con!

dition Oa"x# � 9 thus imposes a way of handling the

boundary paths ð19\ 12Ł[

Here we apply the dynamic programming method in its

two versions "backward and forward#\ which altogether

constitute an e.cient tool in the optimal control theory of

thermodynamic processes ð13Ł[ The power of the dynamic

programming lies in that regardless of the presence of

local constraints "which change the control vector u into

u\ the latter containing the Lagrange multipliers m?a#\ the

extremal performance functions work with the same state

variables as in the case of the unconstrained problem[

Only the control sets are di}erent\ but those are absent

in the optimal performance functions[ Hence\ regardless

of speci_c constraints\ the basic problem of the minimal

_nal entropy "and associated minimum of entropy pro!

duction# is governed by the characteristic function of the

following structure

min
"u\ m?#

xf
9 0 S f "xi

9 \xi\ ti\ xf\ tf# � xi
9¦ss"x

i\ ti\ xf\ tf# "23#

where ss is the minimum of J\ the constrained entropy

production or its time!dependent generalization[ The

function Sf "equal to the sum of S gf

¦Sdf

because of the

additivity of dissipation over subsystems# does not con!

tain the variable xf
9[ S

f may be associated with the expan!

sion of the _nal entropy around the complete initial non!

equilibrium state of the process[ The partial derivatives

of the extremal function Sf with respect to its {working

state| ðhere the initial state "ti\ xi#Ł and those of a {wave!

front function|\ de_ned as V f 0 S f−xf
9\ do coincide[ One

can thus use the partial derivatives "1Vf:1xi\ 1Vf:1ti#

instead of "1Sf:1xi\ 1Sf:1ti# in any equation of the back!

ward DP algorithm "the standard algorithm in which the

initial state xi
9\ xi\ ti is varied#[

However\ one can also state a dual problem of a maxi!

mal initial coordinate of entropy\ xi
9\ when the _nal

entropy coordinate xf
9 is _xed[ This formulation is par!

ticularly suitable for thermodynamics as the _nal entropy

of the equilibrium point attained in an adiabatic system

at the limit of in_nite time is constant by nature[ Yet

we do not assume here that the _nal state must be an

equilibrium state as we admit _nite time transitions[ The

maximum of xi
9 is described by the extremal performance

function

max
"u\ m?#

xi
9 0 S i "xf

9\ x
f\ tf\ xi\ ti# � xf

9−ss"x
i\ ti\ xf\ tf#[ "24#

The partial derivatives of the extremal performance func!

tion Sf with respect to its {working state| ðthe _nal state

"t0\ x0#Ł and those of V i 0 xi
9−S i coincide only modulo

the sign[ One may therefore\ use the negative partial

derivatives "−1Vi:1xf\ −1Vi:1tf# instead of "1Sf:1xf\

1Sf:1tf# in any equation of the forward DP algorithm "the

algorithm where the _nal state xf\ tf is varied#[ Yet it

should be realized that Vi and Vf\ as de_ned above\ rep!

resent the same function

V"xi
9\ x

i\ ti\ xf
9\ x

f\ tf# � xi
9−xf

9¦ss"x
i\ ti\ xf\ tf# "25#

which vanishes along any extremal path[ These properties

are exploited below[ While both S and V refer to non!

equilibrium situations\ it should be kept in mind that

only under special conditions\ which preserve the time!

independence of S\ the function S is the thermodynamic

entropy[ One of the necessary conditions is the auto!

nomicity of the Lagrangian\ another is the vanishing of

a corresponding Hamiltonian function "Section 7#[

With the distinction in mind between the entropy coor!

dinate x9 and an entropy S as an extremum property of

x9\ in order to _nd the equations of dynamic pro!

gramming "DP#\ we apply here Bellman|s optimality

principle ð00\ 06\ 08Ł\ for a control u in a set U which

makes the "constrained# _nal entropy coordinate xf
9"sf#

a minimum for a _xed xi
9"si# or an initial entropy coor!

dinate xi
9"si# a maximum for a _xed xf

9"sf#[ By doing

this\ we use the optimality principle in a rather seldom

context which shows the link between the original and

dual optimization problem[ The principle states that the

optimal _nal value of an optimized quantity is a function

of the initial state\ equation "23#\ whereas the optimal

initial value of the optimized quantity is a function of the

_nal state\ equation "24#[ See also Fig[ 3[ ðAs a generalized

optimized quantity one could consider instead of the x9

a criterion A"x9\ x\ t# 0 A"x# which works with the same

structure of the associated Hamiltonian[Ł We thus apply

the original and dual statement of the optimality principle

for the initial and _nal part of a thermodynamic ray\ to

show that the conclusions stemming from DP equations

can be read in terms of a single\ common wave!front

function V"xi
9\ x

i\ ti\ xf
9\ x

f\ tf# 0 V"xi\ xf# which treats the

initial and _nal states in the space time on an equal

footing[ Of diverse possible parameters s\ the simplest

ones as the time t or the length l are favored[ While we

derive here the DP equations for the functions Sf"xi# or

Si"xf#\ a formula for the extremal entropy production or

its non!autonomous generalization\ ss"x
i\ ti\ xf\ tf# in the

narrowed space "x\ t#\ follows immediately from the con!

dition V"xi\ xf# 0 9[

Let us now consider the minimum problem for the _nal

entropy coordinate\ xf
9[ We assume di}erentiability of

the optimal function Sf"xi# and consider the "enlarged#

control u in intervals ðsi\ si¦DsŁ and ðsi¦Ds\ sfŁ\
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Fig[ 3[ Duality for dynamic programming formulation[ The

_nal entropy Sf generated in terms of the initial states xi as the

minimum of the _nal entropy coordinate xf
9[ The initial entropy

Si is generated in terms of the _nal states xf as the maximum of

the initial entropy coordinate xi
9[

where Ds is a small quantity[ Working with a _xed initial

state in Sf"xi#\ we assume that the {long|\ _nal segment of

an optimal trajectory\ for s in the interval ðsi¦Ds\ sfŁ\

is optimal[ The performance index of this optimal seg!

ment is Sf"xi¦Dx#[ Thus\ for the whole trajectory in the

interval ðsi\ sfŁ\ the _nal entropy is the minimum of the

expression

xf
9 � S f "xi¦Dx#

0 S f "xi
9¦Dx9\ x

i¦Dx\ ti¦Dt#[ "26#

The expression in the second line of equation "26# is

associated with the split of the space!time vector xi into

its parts xi
9\ xi and ti[ The minimization in question is

with respect to the control vector ui for the small initial

"non!optimal# part of the path[ It is performed at the

constant xi �"xi
9\ x

i\ ti# subject to all constraints\ i[e[

including the di}erential transformations "20#[ Restrict!

ing the Taylor expansion of Sf\ equation "26#\ to linear

terms one _nds "summation convention is used#

xf
9 � S f "xi#¦

1S f

1xxb

Dxb¦9"o1#

0 S f "xi
9\ x

i\ ti#¦
1S f

1xi
9

Dx9¦
1S f

1xi
k

Dxk¦
1S f

1ti
Dt¦9"o1#[

"27#

In equation "27# the symbol 9"o1# means the second!order

and higher terms[ They possess the property

lim ð9"o1#:DsŁ : 9 when the parameter increment tends

to zero\ Ds : 9[

Likewise\ for the dual problem of maximum initial

entropy coordinate\ xi
9\ one is working with a _xed _nal

coordinate of the state vector x � xf and assumes that a

{long| initial segment of the trajectory is optimal[ The

performance index of this optimal segment equals

Si"xf−Dx#[ In this case the control u � uf should be

properly adjusted along a {short| non!optimal _nal part

of the path[ For the whole path in the interval ðsi\ sfŁ\

the initial entropy is the maximum of

xi
9 � S i "xf−Dx#

0 S i "xf
9−Dx9\ x

f−Dx\ tf−Dt#[ "28#

The maximization is at the constant xf �"xf
9\ x

f\ tf# sub!

ject to the constraints "20#[ Restricting to the linear terms

the expansion of Si\ equation "28#\ in the Taylor series\

one obtains

xi
9 � S i "xf#−

1S i

1xf
b

Dxb¦9"o1#

� S i "xf
9\ x

f\ tf#−
1S i

1xi
9

Dx9−
1S i

1xf
k

= Dxk−
1S i

1tf
Dt¦9"o1#[

"39#

In equations "27# and "39# the state changes are linked

with controls u by the state equations "20#\ hence for

small Ds]

Dxb � vb"x\ u#Ds¦9"o1#[ "30#

After substituting equation "30# into equations "27# and

"39#\ and performing the appropriate extremizations one

obtains in terms of the coordinates of the initial point

min
u

i xf
9 � min

u
i 6S f "xi#¦

1S f

1xi
b

vb"x
i\ ui#Ds¦9"o1#7 "31#

and\ in terms of the coordinates of the _nal point

max
u

f xi
9 � max

u
f 6S i "xf#−

1S i

1xf
b

vb"x
f\ uf#Ds¦9"o1#7[

"32#

Based on the de_nition of the optimal functions Sf and

Si\ equations "23# and "24#\ equations "31# and "32# can

be simpli_ed next as each S is independent of the control

u[ After reduction of Sf and Si and division of both sides

of equations "31# and "32# by Ds\ the passage to the limit

Ds : 9 subject to the condition lim ð9"o1#:DsŁ : 9 yields\

respectively\ the backward and forward HÐJÐB equations

of the optimization problem\ i[e[

min
u

i 6
1S f

1xb

vb"x
i\ ui#7

� min
u

i 6
1S f

1xi
9

dxi
9

ds
¦

1S f

1xi
k

dxi
k

ds
¦

1S f

1ti

dti

1s7
� min

u
i 0

dS f

dsi1� min
u

i 0
dV

dsi1� 9 "33#
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and

max
u

f 6−
1S i

1xf
b

vb"x
f\ uf#7

� max
u

f 6−
1S i

1xf
9

dxf
9

ds
−

1S i

1xf
k

dxf
k

ds
−

1S i

1tf

dtf

ds7
� max

u
0
0−

dS i

dsf1� max
u

f 0
dV

dsf1� 9[ "34#

In the expressions appearing in the second line of the

above equations\ which link the HÐJÐB equations with

the properties of the total derivative of the wave!front

function V\ the space!time vector x has been split into its

parts related to x\ t and s[ The property

V � S f−xf
9 � xi

9−S i has been used in the second lines

of the above equations[ The _rst lines of equations "33#

and "34# prove that\ in the optimization\ the rate dxi:ds\

dt:ds\ etc[ in the second lines must be expressed in terms

of the state variables and all actual controls\ i[e[ including

the Lagrange multipliers of the local constraints[ Hence\

the presence of the multiplier m? in the expression

dx9:ds � Ls"x\ t\ u\ m?# for the restricted rate of the

entropy production[ The optimal wave motion always

maximizes the speed of the advancing wave!front dV:dsf

or the speed of the retreating wave!front dV:d"−si#[ This

result holds even if there are certain local constraints

caused by a {con_gurational obstacle|[

When the parameter s � t\ dt:ds � vt 0 0 is the n¦1!

th rate equation in the above HÐJÐB equations[ Equa!

tions "33# and "34# resemble the HamiltonÐJacobi

expressions with the extremization sign before their Ham!

iltonian!type expressions\ which are the scalar products

of the process rates and the corresponding partial deriva!

tives of Sf\ Si\ ss or V[ In the language of the wave!

propagation theory these equations state that the wavelet

is always located on one side of its tangent hyperplane or

that the optimal control is always chosen in order

to maximize the velocity of the wave!front[ This state!

ment is equivalent to Pontryagin|s maximum principle

ð19\ 10Ł[

5[ HÐJÐB equation for the minimum entropy

production in the original space and the power

criterion

The absence of the entropy coordinate x9 in all rate

functions enables one to return to the ordinary or reduced

space of the state variables "x\ t#[ Since equations "23#

and "24# are valid\ S f � xi
9¦ss"x

i\ ti\ xf\ tf# and

S i � xf
9−ss"x

i\ ti\ xf\ tf#\ the forward and backward HÐJÐ

B equations "33# and "34# read in terms of the Lagrangian

Ls and the optimal entropy production ss"x
i\ ti\ xf\ tf#

min
u\m? 6

1ss

1ti
¦

1ss

1xi
k

vk"x\ u#¦Li
s"x\ t\ u\ m?#7

� 9 60max
u

i 0
dV

d"−ti#17 "35#

and

max
u\m? 6

1ss

1tf
¦

1ss

1xf
k

vk"x\ u#¦Lf
s"x\ t\ u\ m?#7

� 9 60max
u

f 0
dV

d"tf#17[ "36#

Each of these equations refers to the minimum of integral

J\ equation "29#[ Note that in equations "35# and "36# v

is the original "not enlarged# vector of rates and u is the

original "not enlarged# control vector[ "In our ther!

modynamic examples they are identical\ i[e[\ v"x\ u# 0 u[#

As it may be shown that 1ss:1xf � −1ss:1xi\ equations

"35# and "36# represent in essence the same relationship[

In what follows we will deal with the {forward| equation\

equation "36#\ and will neglect the superscript f of the

_nal state[ Thus\ within the optimal control framework\

the HÐJÐB equation for the minimization problem of the

entropy production integral J is

max
vg\vd\m? 6

1ss

1t
¦

1ss

1xg
vg¦

1ss

1xd
vd−Rg"x#] vgvg

−
0

1
Rd"xg#] vdvd−C"xg\ xd\ t#−m? ="vg¦vd#7� 9 "37#

where vg and vd are the two dependent controls and the

second line represents the thermodynamic Lagrangian\

Ls[ Of course\ 1ss:1t � 9 for adiabatic thermodynamics[

As the presence of the Lagrange multiplier m? allows

us to treat the controls as unconstrained\ i[e[\ to apply

the stationary extremum conditions\ equation "37# is

equivalent to the set of the following equations]

1ss

1t
¦

1ss

1xg
vg¦

1ss

1xd
vd−Ls"x\ v\ m?\ t# � 9

1ss"x\ t#

1xg
�

1Ls"x\ v\ m?\ t#

1vg
^

1ss"x \t#

1xd
�

1Ls"x\ v\ m?\ t#

1vd

1Ls"x\ v\ m?\ t#

1m?
"38#

� f?"x\ v# � vd¦vd � 9

with the unknowns] ss\ v and m?[

Note that evaluation of the total derivatives

d"1L:1vg#:dt and d"1L:1vd#:dt of the two middle equa!

tions of the above set\ with the help of the _rst equation

to eliminate ss\ leads to the EulerÐLagrange equations[

Indeed\ one obtains

d

dt 0
1Ls

1vg
i
1�

d

dt 0
1ss

1xg
i
1�

11ss

1t 1xg
i

¦s
j

11ss

1xg
j 1xg

i

vg
j
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�
1

1xg
i
0
1ss

1t
¦s

j

1ss

1xg
j

vg
j1�

1Ls

1xg
i

"49#

where the vanishing _rst line of equation "38# has been

exploited[ This derivation also holds for the variables xd[

Moreover\ it is worth stressing that equation "49# can

be interpreted as the extremum condition of the power

criterion Ps � s¾s−Ls ðthe _rst line of equation "38#Ł with

respect to the state of the system\ i[e[ by applying

1Ps:1xg
i � 1Ps:1xd

i � 9[

The EulerÐLagrange equations\ for each subsystem

d

dt 0
1Ls

1vg 1�
1Ls

1xg
^

d

dt 0
1Ls

1vd 1�
1Ls

1xd
"40#

along with the constraint f? � 9 ðthe last equation of the

set "38#Ł\ de_ne the thermodynamic motion[ One is thus

assured that the HÐJÐB equation contains the full infor!

mation which can be derived from the "constrained# vari!

ational calculus\ so it is su.cient to proceed with an HÐ

JÐB equation of the problem[ Numerical solutions are

e}ective for small dimensions of the state even in the

presence of complex constraints f?[ They are based on

transformation of a continuous HÐJÐB equation into its

discrete counterpart which is the Bellman|s recurrence

equation[ We refer the reader to many books in which

such recurrence equations are derived and their computer

solutions are found by an iterative procedure ð00\ 08\ 06\

13Ł[ Otherwise\ we are dealing here with the analytical

approach to the problem[

Now we will make an essential assumption that the

function ss is known ðas the component of the solution

to the set "38#Ł[ The HÐJÐB equation "37# can then use

this known optimal ss and the related known entropy

function S ðequation "24# with xf
9 � S and xf � xŁ to

de_ne the rates v in terms of 1S:1x from equation "38#[

The entropies of _nal states S can be substituted into this

equation as sums of the productions ss and the known

initial entropies Si[ This procedure is admissible due to

explicit independence of the model\ equations "36#Ð"38#\

of the " _nal# thermal coordinate xf
9[ The change of the

generalized entropy S is

S"xg\ xd\ t\ xgi\ xdi\ ti# � ss"x
g\ xd\ t\ xgi\ xdi\ ti#¦S i "41#

where the superscript i refers to the initial state and the

variable _nal states are considered[ For the {ther!

modynamic| dissipation functions C and ss\ that is when

it can be assumed that the model is time!independent and

su.ciently exact to regard ss as the change of the physical

entropy\ equation "41# takes the special form

S"xg\ xd# � ss"x
g\ xd\ xgi\ xdi#¦S i[ "42#

When this is substituted to equation "37# and the deriva!

tive 1S:1t is set to zero\ the power criterion Ps follows in

the time!independent form proposed by Onsager ð2Ł but

generalized to constrained state variables

Ps "x
g\ xd\ vg\ vd\ m?# 0 6−

1S

1xg
vg−

1S

1xd
vd¦

0

1
Rg"x#] vgvg

¦
0

1
Rd"xg#] vdvd¦C"xg\ xd#¦m?"vg¦vd#7[ "43#

In adiabatic systems this applies to a time!independent S

and with Ps � 9[ The partial derivative 1S:1t\ implied

by equation "37#\ vanishes whenever one restricts the

thermodynamic entropies[ In non!adiabatic systems\

even for autonomous dissipation functions and related

Lagrangians\ the derivative 1S:1t and the power criterion

Ps are non!vanishing whenever Hs � F−C is non!van!

ishing^ then only certain generalizations of the ther!

modynamic entropy are represented by S[ Yet the deriva!

tive 1S:1t can still be ignored in the power criterion Ps as

not in~uencing the extremum conditions of equation "27#

with respect to the rates v[

Thus\ the HÐJÐB theory proves that\ in order to assure

the minimum of the second law integral "18#\ one has to

maximize the Hamiltonian expression in equation "37#\

or equivalently\ to minimize the power criterion "43#[

This extremization is valid for each time instant of the

process\ and results in dynamical equations which link

the rates v with the state variables x and the derivatives

1S:1x\ which are just the {phenomenological equations|

of irreversible thermodynamics[ Our general form of the

principle of minimum power

min
vg\vd\m?

Ps "x
g\ xd\ vg\ vd\ m?# � 9 "44#

is a generalization of the Onsager|s local!extremum prin!

ciple to the case of DVA[ This criterion is especially useful

to two!phase systems and interpenetrating continua[

In conclusion\ power criteria of non!equilibrium ther!

modynamics stem from Hamiltonians of suitable HÐJÐB

equations for problems of minimum entropy generation

"with two dissipation functions#[ The essential di}erence

between an HÐJÐB equation and a related power criterion

Ps is that the function S in an HÐJÐB equation is unknown

and it should be found for a de_nite Lagrangian\ Ls\

whereas the function S in a power criterion Ps is a given

thermodynamic function[ The fact that an HÐJÐB is not

restricted to classical S makes generalizations possible[

See Section 8 for examples of dynamics satisfying the

above criteria[

6[ Phenomenological equations of DVA from the power

criterion

Now we shall implement our approach based on

dependent variables which allows us the non!truncated

function of the entropy in its original form\ with linear

terms[ Let us apply the criterion "37# or "43# to obtain

equations of irreversible dynamics[ As distinguished from

the IVA "where partial derivatives of the principal func!
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tion are di}erences of pertinent potentials#\ here the par!

tial derivatives of the potential function S are the absolute

potentials\ i[e[\ the Planck potentials\ zg
i and zd

i \ and the

temperature reciprocals T g−0

and Td−0

\ expressed in terms

of the deviations x\ equation "00#]

1S g"xg#

1xg
� pg"xg# �"zg

0\ z
g
1\ [ [ [ \ z

g
s \ T

g−0

#[ "00?#

In e}ect\ the variation of Ps with respect to all control

variables\ the rates vg\ vd and the multiplier m?\ yields

expressions equivalent with the phenomenological equa!

tions of heat and mass exchange

dvg] pg � 1Ls:1vg¦m? "45#

dvd] pd � 1Ls:1vd¦m? "46#

dm?] vg¦vd � 9 "47#

where Ls � F�¦C is the dissipative kinetic potential[

These equations should be solved with respect to vg\ vd

and m?[ Based on the above set\ one may interpret the

Lagrange multiplier m? as an interphase transfer potential\

and use further the new symbol p� for m?[

For the dissipation function F� quadratic with respect

to rates "Rij independent of v\ although it still may depend

on x#\ one gets the linear equations

dvg] pg � Rgvg¦p� "48#

dvd] pd � Rdvd¦p� "59#

along with equation "47# which links them[ One can write

this result in the Ohm|s law form\ which contains the

symmetric resistance matrices Rg and Rd]

dxg

dt
�"Rg#−0"pg−p�# 3 −"LG#gxg "50#

dxd

dt
�"Rd#−0"pd−p�# 3 −"LG#dxd "51#

dxg

dt
¦

dxd

dt
� 9[ "52#

The physical approximations refer to the linear dynamics

and the second!order expansion of S\ equation "8#\ with

the constant coe.cients[

The above equations describe the energy and mass

exchange for a state!dependent Rij[ It may be noted that

when the _rst dissipation co!function\ F�"x\ v#\ is non!

quadratic in the rates\ the rates follow as non!linear func!

tions of the potential di}erences p−p�[ Any non!linear

extensions would make a number of resulting equations

ðsuch as\ e[g[\ equation "53# belowŁ more complex\ yet

the procedure would remain the same[

Substituting equations "50# and "51# into the constraint

"52# yields

"Rg#−0"pg−p�#¦"Rd#−0"pd−p�# � 9 "53#

whence\ the interphase transfer potential follows as

p� �
"Rg#−0pg¦"Rd#−0pd

"Rg#−0¦"Rd#−0
�

Lgpg¦Ldpd

Lg¦Ld
"54#

where Lg 0"Rg#−0 and Ld 0"Rd#−0[ This result makes it

possible to eliminate the Lagrange multiplier p� from the

transfer equations "50# and "51#[ One thus obtains the

kinetic equations which contain the overall transfer

resistance matrix R � Rg¦Rd or the overall conductance

matrix L 0 R−0 such that L−0 �"Lg#−0¦"Ld#−0]

dxg

dt
� R−0"pg−pd# 0 L 0

1S

1xg
−

1S

1xd1 "55#

dxg

dt
� R−0"pd−pg# 0 L 0

1S

1xd
−

1S

1xg1[ "56#

We see that the overall transfer resistance appears quite

natural in the model with dependent state variables[ The

simplest special case described by the above equations

refers to the pure heat exchange between phases as sub!

systems[ For two subsystems\ g and d\ the dependent

equations of the heat exchange may be written in the

form

deg

dt
�

"T g#−0−"Td#−0

R
"57#

and

deg

dt
�

"Td#−0−"T g#−0

R
[ "58#

Clearly\ their sum vanishes "energy conservation#[ Both

resistances may be the state dependent quantities[ These

are the correct result if the resistances are Rg � 0:"kgA#\

where A is the exchange area and kg are partial coe.cients

of heat exchange referred to the driving forces DT−0

rather than to DT[ We thus have shown that the quadratic

approximation to the entropy\ equation "8#\ is the appro!

priate governing criterion for the linear irreversible

dynamics[

7[ IVA and correspondence with the Onsager|s

description

It may be seen that the correspondence between the

two considered descriptions is assured[ Indeed\ for the

IVA description "the independent variables a 0 xg#\ one

obtains from equations "19# and "55# the independent

phenomenological equation in the Onsager form

da

dt
� R−0"pg−pd# 0 L 1S:1a[ "69#

This corresponds directly with equations "55# and "56#

of DVA[ The correspondence refers also to the entropy

production\ ss[ In terms of Onsager|s a\ the quantity ss is

given by equation "11# in which\ by de_nition\

G � Gg¦Gd is the positive matrix and the product −Ga
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is the interphase driving force X � pg−pd or the di}erence

of the driving forces Xg and Xd\ equation "01#[ Thus\ both

entropy productions\ equation "06# of DVA and equation

"11# of IVA\ are equal]

ss 0
dS

dt
� x¾ g = Xg¦x¾ d = Xd � a¾ = X�

dS
dt

[ "60#

In the independent variables the minimized second law

integral has the form

J � g
t1

t0
Ls"a\ a¾# dt � g

t1

t0
ðF�"a\ a¾#¦C"a#Ł dt

� g
t1

t0 $
0

1
R"a#] a¾a¾¦C"a#% dt[ "61#

This expression contains the total resistance R � Rg¦Rd

and is consistent with equation "18#[

The HÐJÐB equation for the thermodynamic problem\

written in the form of the corresponding power criterion

and in terms of the _nal entropy rather than the entropy

production ss\ reads

min
a¾ WPs "a\ a¾# 0 −

1S
1a

a¾¦R"a#] a¾a¾¦C"a# w� 9 "62#

where the function S is Onsager|s approximation to the

non!equilibrium entropy\ equation "12#[ This result rep!

resents the Onsager|s restricted extremum principle in

which the phenomenological equations are obtained from

the variation of Ps with respect to the independent rates

a¾ at the _xed state variables\ a[ The corresponding DVA

result is equation "43#[ For arbitrary mathematical dis!

sipation functions the variational procedure "and the

power criterion Ps# does not generate changes of the

thermodynamic entropy[

The perfect di}erential of the extremal function for the

integral J\ equation "61#\

dss �
1ss

1a
= da¦

1ss

1t
dt �X = da−Hs dt

�
1Ls

1a¾
= da−0

1Ls

1a¾
= a¾−Ls1 dt "63#

shows that in order to assure the time independent poten!

tials ss and S\ the thermodynamic Hamiltonian or the

Legendre transform of the dissipative Lagrangian Ls

must vanish]

Hs 0
1Ls

1a¾
= a¾−Ls � F"a\ a¾#−C"a# � 9 "64#

which means the equality of the kinetic and potential

dissipation functions[ This equation\ along with the addi!

tivity of the momenta 1L:1a¾ and the Hamiltonian Hs over

the subsystems are the physical constraints that assure the

additive entropy\ S � Sg¦Sd[ For the Onsager|s model\

the generalized momenta are X � Ra¾ and

Hs �
0

1
R] a¾a¾−C"a# �

0

1
L] XX−C"a# � 9 "65#

where L � R−0[ This proves that C"a# must be quadratic

for his linear dynamics\ equation "14#[ That dynamics is

consistent with C in the form C"a# �
0

1
W] aa\ where

W � GR−0G[

Because of the state function property of the ther!

modynamic entropies\ S or S\ the time t cannot appear

explicitly in any of the rate functions "especially in dis!

sipation functions# as such explicit time dependence

would exclude time!independent S and S[ Moreover\ the

conditions 1S:1t � 9 and 1S:1t � 9 applied either in the

governing HÐJÐB equations or in resulting HamiltonÐ

Jacobi equations causing the vanishing "non!extremal#

Pontryagin|s Hamiltonian and classical "extremal# Ham!

iltonian in these equations\ respectively[ Accordingly\

each power criterion and its corresponding HamiltonÐ

Jacobi equation are time independent and do not contain

the derivative 1S:1t ðthe time derivative is present only in

general equations not restricted to adiabatic ther!

modynamic systems\ such as equation "37# of DVAŁ[

As the consequence of these limitations\ the HamiltonÐ

Jacobi equation for the IVA

0

1
s
i

s
k

Lik

1Ss

1ai

1Ss

1ak

−C"a# � 9 "66#

describes the vanishing property of the dissipative Ham!

iltonian\ Hs � F−C ðthe Legendre transform of

Ls � F�¦C for the quadratic F� �"0:1#R] a¾a¾Ł in which

the generalized momenta pi are identi_ed with the partial

derivatives 1Ss:1ai[ Note also that the Legendre trans!

formation of a Lagrangian is explicit in all HÐJÐB equa!

tions and power criteria\ in which pi � 1Ss:1ai � 1S:1ai

"IVA# or pi � 1ss:1xi � 1S::1xi "DVA#[ Clearly\ the

entropy plays the role of an action\ which is the {ther!

modynamic action|\ in both approaches "DVA and IVA#[

As S � Si¦Ss\ equation "66# governs both the optimal

production function ss 0 min J and the "{restricted|#

entropy function\ S of equation "12#[ The use of

Ss � 0:1G] aa in equation "66#\ immediately de_nes the

proper second dissipation function C"a# for this problem

as "0:1#a = W = a\ with the symmetric matrix W 0 GLG[

We observe that it is the evaluation of the rates as the

optimal control variables in the Hamiltonian expression

of the HÐJÐB equation and the vanishing dissipative

Hamiltonian which lead to the second dissipation func!

tion[ Time independent second dissipation function is

insu.cient for the extremum dissipation integral to be

the production of the thermodynamic entropy[ It may be

noted that the form of C is inessential for the structure

of the phenomenological equations in terms of the poten!

tials p[ Nonetheless this form in~uences the EulerÐLag!

range equations of the problem[

An extra conclusion stemming from the above analysis

is that the phenomenological equations in their usual

form\ which links the coordinates of the entropy gradient

and the process rates\ do not necessarily follow as the

EulerÐLagrange equations of the variational problem for
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minimum dissipation[ They may evolve rather as

expressions that describe rates "controls# in terms of the

state and state adjoints "gradients of S or Ss# as the

optimal rates maximizing the Pontryagin|s Hamiltonian

with respect to the rates as the control variables[

8[ EulerÐLagrange structure of transfer and relaxation

equations

Now we return to DVA and focus on its EulerÐLag!

range equations\ equation "40#[ As already explained in

Section 5\ the EulerÐLagrange equations of the ther!

modynamic problem arise as a transformation of the

phenomenological equations[ It is also worth remem!

bering that the former can be derived from the extremum

condition of the power criterion Ps with respect to the

state x and using the equality Ps � 9[ These properties

hold for both DVA and IVA[

An expanded form of the _rst equation of the set\

equation "40#\ is

d

dt 0
1ðLs"x

g\ vg#¦m? = f?Ł

1vg 1�
1ðLs"x

g\ vg#¦m? = f?Ł

1xg
"67#

and the analogous equation for xd plus the constraint

equations[ These equations stress explicitly the role of the

Lagrange multipliers associated with the conservation

laws[

As suggested by the IVA Hamiltonians in equations

"65# and "66#\ one may test the above EulerÐLagrange

equations by using the following second dissipation func!

tion]

C"xg\ xd# �
0

1
Wg] xgxg¦

0

1
Wd] xdxd "68#

where Wg 0"GLG#g and Wd 0"GLG#d are the symmetric

matrices[ Indeed\ note that when the equality xg � −xd

is applied in equation "68#\ the description becomes the

IVA and the generating function becomes Onsager|s

C"a# �"0:1#W] aa\ where W � GLG contains the overall

coe.cients[ Thus\ equation "68# is essentially an Onsa!

gerian structure ð2\ 6Ł\ but it refers to the DVA and partial

transport and thermodynamic coe.cients[

For an isolated system with quadratic dissipation func!

tion "68# and constant conductance matrices\ the ther!

modynamic EulerÐLagrange equations of DVA are

d

dt
"Rgvg¦p�# � Wgxg^

d

dt
"Rdvd¦p�# � Wdxd "79#

where the Lagrange multipliers p� 0 m? are the interphase

transfer potentials[ This is an important result "Fig[ 2#[

One may note that the left!hand!sides of these equations

are time derivatives of the DVA transfer potentials

"Planck potentials and temperature reciprocals#[ With

equations "04#\ equation "79# may otherwise be written

in a few alternative forms]

dpg

dt
� Wgxg � GgLgGgxg � GgLg"p�−pg#

� KTg"p�−pg# "70#

where the matrix Kg � LgGg is the state relaxation matrix

and\ simultaneously\ the matrix of products of the trans!

fer coe.cients and the transfer area[ The asterisk state

variables do not appear due to the suitable de_nition of

x as the deviations[ An analogous equation holds for the

adjoints pd and the state variables xd[ It follows that

the EulerÐLagrange equations\ equation "70#\ and the

phenomenological equations "50# and "51# of the HÐJÐB

theory describe the same dynamics\ although the former

does its job for the time derivatives of the absolute trans!

fer potentials\ dpg:dt and dpd:dt and the latter work for

the time derivatives of the state variables\ dxg:dt and

dxd:dt[

Indeed\ after using equation "00# in equation "70# to

express the dynamics in terms of x]

dpg

dt
� −Gg

dxg

dt
� KTg"p�−pg# � GgLgGgxg � GgKgxg

"70?#

the state relaxation is extracted from the above formula

in the form dxg:dt � −Kgxg\ consistent with the relax!

ation of the thermodynamic adjoints pg and pd[

Summing up\ in terms of the original state vector

n½ �"n\ e#\ and for the Gibbs equation de_ning the non!

equilibrium entropy as an additive quantity over the

homogeneous subsystems

dS 0 dS g¦dSd � pg = dn½g¦pd = dn½d "71#

we have found the associated dynamics in the canonical

form

dn½g

dt
�

1Hs

1pg
^

dpg

dt
� −

1Hs

1n½g
"72#

which\ in the case of the linear dynamics\ governed by

the extremum Hamiltonian of the DVA

Hs �
0

1
L]"pg−pd#"pg−pd#−

0

1
Wg] xgxg−

0

1
Wd] xdxd � 9

"73#

ðcompare equation "77# furtherŁ\ is consistent with the

results of the hydrodynamic theory of the boundary layer[

dn½g

dt
� −Kgxg 0 Kg"n½g�−n½g#^

dpg

dt
� KTg"p�−pg#[

"72?#

"The analogous dynamics hold for the phase d[# Thus\ in

the present formalism\ the relaxation equation for the

co!state variables "thermodynamic adjoints# is a EulerÐ

Lagrange equation[ Otherwise the state relaxation equa!

tion stems either from the HÐJÐB equation\ equation

"37#\ or as the transformation of the EulerÐLagrange

equation "70#[ We have also shown that the equation of
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motion for the state variables n½ and their thermodynamic

adjoints p constitute the canonical set "72#[ Our analysis

has proven that the linear relaxation of the state variables

is governed by the matrix Kg � LgGg and that of the

thermodynamic adjoints by its transpose KTg � GgLg[

Only in the particular case when the matrix K is

symmetric\ the relaxation of state variables and their

thermodynamic adjoints are governed by the same com!

mon matrix K[ The analysis also shows the coherence

and elegance of the approach based on the dependent

variables[

With the second dissipation function\ equation "68#

"consistent with the condition Hs � 9 in an extremum

HÐJÐB#\ the DVA\ as opposed to the classical Onsager|s

approach\ yields the standard equations of heat and mass

exchange in a perfect symmetry for both the state vari!

ables and their thermodynamic adjoints[ This property is

lost in the classical approach\ where the adjoints are not

the absolute potentials pg and pd\ but they are rather

the di}erences pg−pd[ Consequently\ the EulerÐLagrange

equation of the Onsager theory deals not with the time

derivatives dpg:dt and dpd:dt but with the time derivatives

of the thermodynamic forces dX:dt � d"pg−pd#:dt[ The

classical "Onsager|s# result\ while correct\ is less suitable

to use than the result established here\ as the knowledge

of local temperatures and chemical potentials along the

path is more suitable than the knowledge of interphase

di}erences for these quantities[

An analysis of equation "72?# in the case of identical

properties of subsystems yields the condition of the same

relaxation matrix LgGg � LdGd 0 K\ as the internal con!

sistency condition for the linear DVA[ This means that

the relaxation matrices of the two interacting subsystems

must be in agreement\ to assure a common rate of the

interlinked state variables[ Another remarkable feature

of the linear dynamical model is that the interphase

potentials p� are constants which coincide with the equi!

librium potentials p9[ The matrix K is related to the system

size[ A larger system is characterized by smaller matrices

Gg and Gd and K than a smaller one ðconsider equations

"03# and "73#Ł\ hence the relaxation times "entries of K−0#

are larger in the larger system[

09[ HamiltonÐJacobi equation with dependent

variables

There are some subtleties in the problem using DVA\

regarding the use of the Legendre transformation in the

case when the dependent state variables are used\ associ!

ated with the presence of the Lagrange multiplier[ This

is discussed below[

In thermodynamic autonomous systems governed by

a time!independent principal function\ as the ther!

modynamic entropy function is\ the second dissipation

function can be obtained from a general rule as the Leg!

endre transform of its rate dependent part with respect

to all rates "controls# to which the system dynamics are

substituted as a¾ "x# ðconsider equation "64#Ł[ Can this

procedure be extended to the case of dependent variables

in which the role of the Legendre transformation is not

directly substantiated by the theory due to the presence

of the linear control m? � p�<

Let us multiply equation "45# by vg and equation "46#

by vd and add the results taking the constraint "47# into

account[ Then\ after using the de_nitions of the potentials

p in terms of the entropy S]

1S

1xg
= vg¦

1S

1xd
= vd �

1Ls

1vg
= vg¦

1Ls

1vd
= vd[ "74#

In a general case the dependent rates satisfy certain gen!

eralizations of equations "42# and "43#[ When these

results are used in the HÐJÐB equation "37# ðor in its

generalized form for an arbitrary LsŁ\ one concludes that\

while 1S:1x is no longer equal to 1Ls:1v\ the HamiltonÐ

Jacobi equation contains the same Legendre transform

of Ls as in the case of the IVA

1S

1t
¦

1Ls

1vg
= vg 0

1S

1xg
\
1S

1xd
\ xg\ xd\ t1

¦
1Ls

1vd
vd 0

1S

1xg
\
1S

1xd
\ xg\ xd\ t1

−Ls 0
1S

1xg
\
1S

1xd
\ xg\ xd\ t1� 9[ "75#

This also proves that the HamiltonÐJacobi equation pre!

serves its standard form]

1S

1t
¦Hs 0

1S

1xg
\
1S

1xd
\ xg\ xd\ t1� 9[ "76#

Of course\ for an isolated thermodynamic system the time

t does not appear in the Hamiltonian Hs and in S\ and

the above equation has the form Hs � 9[

Again\ while 1S:1x � 1Ls:1v\ the perfect di}erential of

the function S "which is the solution to this equation#

satis_es equation "71#[ Accordingly\ for the linear dynam!

ics with the second dissipation function given by equation

"68#\ the HamiltonÐJacobi equation of the DVA is

0

1
L] 0

1S

1xg
−

1S

1xd1 0
1S

1xg
−

1S

1xd1−
0

1
Wg] xgxg

−
0

1
Wd] xdxd � 9 "77#

where Wg �"GLG#g\ Wd �"GLG#d and

L−0 �"Lg#−0¦"Ld#−0[ This equation is satis_ed by the

DVA entropy\ equation "8#[ The modi_ed form of equa!

tion "77# containing an unknown C"x# may serve to

determine the second dissipation function in an exact
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way\ since the thermodynamic entropy S"x# is frequently

known with a considerable accuracy[ This is the remark!

able virtue of the DVA[ For the linear dynamics\ the

quadratic function "8# is su.cient for that purpose[

An alternative way to _nd the generating function C
of the DVA is to deal with the global Lagrangian\ Ls\ by

inclusion of all formal controls "m? 0 p�\ vg and vd# into

considerations[ Let us verify that procedure for the pure

heat transfer between the subsystems g and d[ Consider

the e}ect of all controls in the Lagrangian Ls\ equation

"17#\ specialized for the case of the heat exchange[

In the case of quadratic dissipation\ the Legendre

transform of Ls with respect to all control type variable

"v\ m?# is identical with the original[ For the heat exchange

example\ the constraint!adjoining Hamiltonian associ!

ated with Ls follows in the form

HL"x\ v\ m?# �
0

1
R g"eg#"vg#1¦

0

1
Rd"ed#"vd#1

¦m?"vg¦vd#−C"eg\ ed#[ "78#

This Hamiltonian must vanish\ which determines the

second dissipation function whenever the dynamical

equations are known[ However\ when the rates v are

expressed in terms of the driving forces with the help of

dynamics such as equation "50#\ for example]

deg

dt
�

"T g#−0−"T�#−0

R g
"89#

the quantity C satisfying the condition HL � 9 contains

the Lagrange multiplier m? 0"T�#−0]

C"x\ m?# �
0

1
"R g#−0 ð"T g#−0−"T�#−0Ł1

¦
0

1
"Rd#−0 ð"Td#−0−"T�#−0Ł1¦"T�#−0"vg¦vd# "80#

where the temperature di}erences are functions of the

state variables\ xg
e � eg−eg9 and xd

e � ed−ed9[ For the

linear dynamical model the interphase potentials p�

coincide with the equilibrium potentials p9[ Then apply!

ing equations "2# and "04# in equation "80# yields the

second dissipation function

C"x# �
0

1
Rg"Gg#1"xg

e#
1¦

0

1
Rd"Gd#1"xd

e#
1

�
0

1
W g"xg

e#
1¦

0

1
Wd"xd

e#
1 "81#

in which xe � e−e9[ Equation "81# is the special case of

equation "68#[ As this is the proper static function for the

DVA\ the suitability of the Hamiltonian function HL\

equation "78#\ is con_rmed[ Yet\ by using in equation "80#

the interphase relationship\ equation "54#\ specialized to

the form

"T�#−0 �
Lg"T g#−0¦Ld"Td#−0

Lg¦Lg
"82#

one can eliminate the Lagrange multiplier and sim!

ultaneously reduce the number of coordinates to those of

the Onsager approach[ This procedure yields

"T g#−0−"T�#−0 �
R g

R g¦Rd
""T g#−0−"Td#−0# "83a#

"Td#−0−"T�#−0 � −
Rd

R g¦Rd
""T g#−0−"Td#−0#[

"83b#

Thus\ after using the two above equations in equation

"80#]

C"xe# �
0

1
"R g#−0R−1 ð"T g#−0−"Td#−0Ł1

¦
0

1
"Rd#−0R−1 ð"T g#−0−"Td#−0Ł1

�
0

1
"R g¦Rd#−0 ð"T g#−0−"Td#−0Ł1

�
0

1
R−0G1a1

e � C"ae# "84#

which is the classical result for the static dissipation func!

tion in terms of the independent variable ae and overall

coe.cients R � Rg¦Rd and G � Gg¦Gd[

00[ Final remarks

This work has been motivated by the fact that the

number of exchange equations\ especially those for multi!

phase systems\ have forms which seem at most only

indirectly related to the Onsager|s theory[ The expla!

nation of the origin of this feature has been the task of our

work[ Our mode of approach has involved comparison of

the same process described in terms of the dependent and

independent variables[ Two approaches have been used]

the DVA\ or the dependent variables approach^ and the

IVA\ or the independent variables approach "a two!phase

counterpart of the integral Onsagerian description#[

The virtue of the approach based on dependent vari!

ables is that it clari_es meanings of overall coe.cients in

terms of their one!phase components\ a feature which is

not considered in the Onsager|s theory[ We see that this

approach yields phenomenological equations consistent

with those of Onsager\ yet it has the methodological

virtue of using an original "non!truncated# entropy func!

tion\ with the linear terms preserved[ The Lagrange mul!

tipliers of DVA are the co!state variables in the Gibbs

equation\ the transfer potentials\ p[ The DVA allows

natural discontinuities of the state variables at the inter!

face\ and implies more correct partial transfer coe.cients

and partial driving forces instead of the "IVA!related#

overall transfer coe.cients and overall driving forces[

The errors stemming from the use of overall coe.cients

can be especially large in non!isothermal systems with

unidirectional or non!equimolar heat and mass transfer

as shown by experiments ð14Ð16Ł[

Our approach shows that the classical irreversible ther!

modynamics uses\ in fact\ the restricted entropy function\

S\ which contains only terms quadratic or higher due to

the prior elimination of linear terms from the original
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entropy using the conservation laws[ This restricted S is
a function of the exergy type\ as the latter also has the
linear terms eliminated[ The DVA approach\ proposed
here\ allows the use of the genuine thermodynamic
entropy and its _nite!time extensions generated through
the Bellman|s method of dynamic programming[

The entropy "or its extensions# plays the role of action
in any approach "IVA or DVA#[ The importance of the
entropy and the related Lagrange equations is also seen
when one passes to the path integrals associated with the
stochastic formulation of the problem and the cor!
responding FokkerÐPlanck equation ð7Ł[ These problems
have not been discussed here\ but a future paper devoted
to stochastic aspects of DVA is planned[ This seems to
be important since the informationÐtheoretic counterpart
of IVA has recently been derived in the context of the
minimum relative Kullback entropy ð17Ł^ thus\ a DVA!
type extension should include explicit conservation laws
and the absolute informational entropy[ Analysis of the
transition region between the gas di}usion and the Knud!
sen di}usion ð18Ł\ has also been omitted as this might
require changes in structure of the dissipation model[ Yet\
an application to continua with antisymmetric "Casimir#
e}ects will be given in a future work\ where a canonical
Poisson bracket structure in the Lagrangian frames gov!
erned by the thermodynamic Hamiltonian Hs will be
used as the starting point to derive more complicated
relaxation equations[ The passage to Eulerian frames\
Clebsch variables\ and a resulting non!Poissonian struc!
ture will also be addressed\ thus extending previous local!
equilibrium results for continua ð29\ 20Ł\ to systems with
inherent local disequilibrium caused by the internal vari!
ables[ We expect that our theory will be appropriate
for formulation of the dissipative component within the
context of general non!equilibrium dynamics thus\ after
inclusion of Casimir|s terms\ the results will be compared
with those found within the so!called functional two!
bracket approaches ð21\ 22Ł\ which were recently trans!
formed into the so!called generic formalism ð23\ 24Ł[
Since our present theory is compatible with internal vari!
able formulations in local equilibrium approximation
ð25\ 26Ł\ the inclusion of Casimir|s terms should add an
important ingredient to the internal variable theory[

In conclusion\ the thermodynamic theory of heat and
mass transfer can be stated in terms of the global\ classical
variational principles\ either as the DVA or "Onsager|s#
IVA[ For the dependent variables "DVA case# we have
established the power criterion from which a ther!
modynamic description complementary with respect to
the Onsager case "IVA# follows[ The new description
involves] DVA variational principle^ "dependent#
phenomenological equations^ DVA entropy production^
DVA Lagrange and HÐJÐB equations^ and the DVA
HamiltonÐJacobi theory[ The signi_cance of these _n!
dings refers particularly to the heat and mass transfer
processes in multiphase _eld systems and in inter!
penetrating continua[
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Appendix] an outline of solving methods by discrete

dynamic programming

The problem of constructing a generalized entropy

function S or the related entropy production function ss

in an arbitrary continuous or discrete system can be

solved by the discrete method of Bellman|s dynamic pro!

gramming ð00Ł[ Both continuous and discrete control

processes with a single independent variable can be tre!

ated in the frame of the common discrete formalism of

dynamic programming[ "For the continuous case prior

discretization of the process equations is required[# Thus\

it is enough to consider a multistage control process[ Any

additive positive quantity can be taken as a generalized

cost of the process[ At the stage n of a given duration Dtn

"tn−0 � tn−Dtn# a single!stage cost Pn is the measure of

the local intensity of entropy production Ln
s^

Pn 0 Ln
sDtn[ The total cost is then KN � SPn � SLn

sDtn\

for n � 0\ 1\ [ [ [ \ N[ These data are entirely su.cient to

develop a general theory for integrals or sums of quan!

tities like Pn over cascade processes with an arbitrary

number of stages[ It is\ however\ important that Pn is

properly expressed as a function of the state xn\ and

controls un at the stage n[ The total cost KN which should

be minimized is the sum of Pn over the process stages 0\

1\ [ [ [ \ N[ By de_nition of KN\ the entropy production

function ss is the minimum value of the sum KN[

For a given set of di}erence constraints and any cost

function Pn\ the function ss is found as the solution of a

discrete functional equation or Bellman|s equation of

dynamic programming ð00Ł\ which links the optimal func!

tions sN
s \ sN−0

s and the cost PN of the process at stage N]

sN
s "xN# 0 min

uN

"PN"xN\ uN#¦s9
s "xN−0"xN\ uN###[ "A0#

Here xN−0"xN\ uN# are given equality constraints descri!

bing the transformed state and time when passing from

process stage N−0 to process stage N[ The control vector

uN may include Lagrange multipliers of rate constraints

in problems with dependent rates[ The minimization in

equation "A0# is made numerically for each node of the

grid of the variables xN[ For each node xN the data of the

optimal controls uN\ optimal states xN−0 and the optimal

function sN
s "xN# are tabled[ They are obtained as a solu!

tion of equation "A0# by an iterative procedure for the

stages 0\ 1\ [ [ [ \ N\ starting from N � 0 and s9
s 0 9[ The

function sN
s "xN# represents a thermodynamic cost of the

process related to the local intensity Pn and a _nite dur!
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ation tN−t9[ Equation "A0# is true for any set of con!

straints imposed on intermediate states and controls[ The

optimal function sN
s "xN# is in general a function of both

the _nal state xN and the number of stages N " _nal time

tN#\ even if the process is autonomous[

The relation between the optimal cost functions gen!

erated by dynamic programming and Pontryagin|s

maximum principle is now well understood ð10Ł[ The

optimal trajectories of a thermodynamic problem are

counterparts of mechanical trajectories in mechanics or

light rays in optics[ Otherwise\ the dynamic programming

cost functions describe certain generalized wave!fronts[

The mathematics of these approaches is independent of

the speci_c applications^ they can be conducted _rst in

the frame of the purely classical formulations and the

experience gained can then be used to formulate and

solve more involved problems of thermodynamics[
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